>>

Soutenance de thèse : Denise Maurice

Titre de la thèse

Codes correcteurs quantiques pouvant se décoder itérativement.

Date et lieu de soutenance

Jeudi 26 juin 2014, 15h.

Université Paris 6, campus de Jussieu, amphi 56A.

Résumé

On sait depuis vingt ans maintenant qu'un ordinateur quantique permettrait de résoudre en temps polynomial plusieurs problèmes considérés comme difficiles dans le modèle classique de calcul, comme la factorisation ou le logarithme discret. Entre autres, un tel ordinateur mettrait à mal tous les systèmes de chiffrement à clé publique actuellement utilisés en pratique, mais sa réalisation se heurte, entre autres, aux phénomènes de décohérence qui viennent entacher l'état des qubits qui le constituent. Pour protéger ces qubits, on utilise des codes correcteurs quantiques, qui doivent non seulement être performants mais aussi munis d'un décodage très rapide, sous peine de voir s'accumuler les erreurs plus vite qu'on ne peut les corriger.

Une solution très prometteuse est fournie par des équivalents quantiques des codes LDPC (Low Density Parity Check, à matrice de parité creuse). Ces codes classiques offrent beaucoup d'avantages : ils sont faciles à générer, rapides à décoder (grâce à un algorithme de décodage itératif) et performants. Mais leur version quantique se heurte (entre autres) à deux problèmes. On peut voir un code quantique comme une paire de codes classiques, dont les matrices de parité sont orthogonales entre elles. Le premier problème consiste alors à construire deux « bons » codes qui vérifient cette propriété. L'autre vient du décodage : chaque ligne de la matrice de parité d'un des codes fournit un mot de code de poids faible pour le second code. En réalité, dans un code quantique, les erreurs correspondantes sont bénignes et n'affectent pas le système, mais il est difficile d'en tenir compte avec l'algorithme de décodage itératif usuel.

On étudie dans un premier temps une construction existante, basée sur un produit de deux codes classiques. Cette construction, qui possède de bonnes propriétés théoriques (dimension et distance minimale), s'est avérée décevante dans les performances pratiques, qui s'expliquent par la structure particulière du code produit. Nous proposons ensuite plusieurs variantes de cette construction, possédant potentiellement de bonnes propriétés de correction.

Ensuite, on étudie des codes dits q-aires : ce type de construction, inspiré des codes classiques, consiste à agrandir un code LDPC existant en augmentant la taille de son alphabet. Cette construction, qui s'applique à n'importe quel code quantique 2-régulier (c'est-à-dire dont les matrices de parité possèdent exactement deux 1 par colonne), a donné de très bonnes performances dans le cas particulier du code torique. Ce code bien connu se décode usuellement très bien avec un algorithme spécifique, mais mal avec l'algorithme usuel de propagation de croyances.

Enfin, un équivalent quantique des codes spatialement couplés est proposé. Cette idée vient également du monde classique, où elle améliore de façon spectaculaire les performances des codes LDPC : le décodage s'effectue en temps quasi-linéaire et atteint, de manière prouvée, la capacité des canaux symétriques à entrées binaires. Si dans le cas quantique, la preuve éventuelle reste encore à faire, certaines constructions spatialement couplées ont abouti à d'excellentes performances, bien au-delà de toutes les autres constructions de codes LDPC quantiques proposées jusqu'à présent.

Composition du jury

  • Jean-Pierre TILLICH (Directeur de thèse)
  • David DECLERCQ (Rapporteur)
  • Gilles ZÉMOR (Rapporteur)
  • Jean-Claude BAJARD (Examinateur)
  • Damian MARKHAM (Examinateur)
  • Daniel AUGOT (Examinateur)
  • Iryna ANDRIYANOVA (Examinatrice)

Retour