ÉCOLE DOCTORALE SCIENCES ET INGÉNIERIE

DE

CERGY-PONTOISE

MASTER 2 Research

Intelligent and Communicating Systems

SYSTÈMES INTELLIGENTS ET COMMUNICANTS (SIC)

Master en INFORMATIQUE ET INGÉNIERIE DES SYSTÈMES COMPLEXES

5 research tracks:

- Image and Big Data / Image et Masses de Données (IMD): responsables D. PICARD et D. KOTZINOS
- Artificial Intelligence and Robotics / Intelligence artificielle et Robotique (IAR): responsable A. PITTI
- Signal, Wireless communications / Signal et Télécommunications (ST): responsable I. FIJALKOW
- Methods of Complex Data Analysis / Méthodes d’Analyse des Données Complexes (MADOCS): responsables B. CHALMOND et A. HISTACE

ENSEA
Secrétariat du Master Recherche
6, avenue du Ponceau
CS 20707 Cergy
95014 Cergy Cedex
Tél. : (33) 1.30.73.62.63
Email : masterSIC@ensea.fr

Inscription until June 30th

Mise à jour : avril 2017
Scientific and pedagogical objectives

The research or Research and Innovation tracks of the Master in Intelligent and Communicating Systems (SIC) aims to:

- train students with the latest digital information processing techniques in all stages from sensing to decision-making. It covers a variety of fields such as signal and image processing, telecommunications, pattern recognition, intelligent data analysis, artificial intelligence, cognitive sciences and robotics, heterogeneous integrated systems, and embedded systems, etc.

Information and communication technologies bring new challenges in software, hardware, and embedded electronic systems. Evolution of these technologies will allow computers and electronic devices to investigate everyday objects in a transparent way. They appear in many application fields, in particular

- software tools (image and sound compression, digital image processing, pattern recognition, indexing of databases, etc.),
- products called "connected devices" or "info-appliances" (home automation, personal assistants, intelligent automotive systems, etc.)
- services for electronic commerce (specialized websites, mobile software agents, data mining, etc.)
- Intuitive multimodal human-machine interfaces (HMIs).

Program specifics

Our program aims to train students who will later carry out fundamental or applied research at a high scientific level. The goal is to teach students to analyze and design new algorithms and systems to:

- Design digital embedded systems and hybrid analog/digital systems,
- Design hardware / software architectures,
- Process and analyze signals of different natures (signal and image processing),
- Analyze, index, and retrieve multimedia data (images, videos),
- Classify items and analyze complex data streams,
- Learn to react appropriately to a difficult environment (artificial intelligence, robotics, reconfigurable digital systems),
- Transmit information (digital communications).

We offer five tracks:

- IMD: Image and Big Data (persons in charge: D. PICARD and D. KOTZINOS)
- IAR: Artificial Intelligence and Robotics (A. PITTI)
- ST: Signal, Wireless communications (I. FIALKOW)
- ESA: Electronics of Autonomous Systems (J. LORANDEL and E. BOURDEL)
- MADOCS: Methods of Complex Data Analysis (B. CHALMOND and A. HISTACE)

The unique feature of this program is that it enables the acquisition of transversal skills through diversified teaching. Such skills will be useful for the students in multidisciplinary work. The course covers a broad spectrum of skills and is intended for students who have already taken various preliminary courses (computer science, electronics, physics, mathematics, etc.). The first week of revision/practice course (TP) ensures that all students have a common knowledge foundation, which is necessary for the proper follow-up courses (programming, signal processing basics, and random processes) and practical courses.

Through one of the five programs offered, the student can acquire high-quality skills from professors with internationally recognized expertise.

The practicality of the teaching themes allows students to either write a thesis in an academic or industrial setting (CIFRE), go for innovation creation or find a job in Research and Development in industry.
The M2 SIC relies mainly on the researchers of the ETIS laboratory. Thanks to ETIS’s collaboration network, the course also benefits from contributions of teachers and researchers from various well-recognized laboratories in the field of information and communication science and technology.

Admission Requirements

Students are selected by the members of the teaching team based on their application form. The program is open to:

- students of M1 level of "Computer Science and Engineering of Complex Systems", "Mathematics, Physics and Applications" (MFPA) and "Electrical and Industrial Computer Engineering" (CGI) of the University of Cergy-Pontoise, subject to certain conditions;
- M1-level students from French or foreign universities in related fields (electronics, mathematics, physics, computer science, etc.), subject to certain conditions;
- students in the second year at engineering schools in Cergy-Pontoise (ENSEA, EISTI) in the last year of the engineering cycle, subject to acceptance by their school, and via agreements with these institutions specifying the exemptions and equivalences of courses;
- students in the third year of engineering schools in Cergy-Pontoise;
- graduate students at the Bac + 5 level;
- graduate engineers seeking specialization;
- persons returning to their studies or wishing to develop their professional experience in the context of valorization of the acquired experience.

Organization of the program

Students need to fulfill (UE = teaching unit):

- 5 fundamental teaching units (UEF)
- 4 complementary teaching units (UEC)
- 1 English teaching unit
- 1 “Management of Innovation and Entrepreneurship” teaching unit
- 1 teaching unit among research courses
- 1 research project
- Internship (6 months)

The choice of fundamental and complementary teaching units (UEF and UEC) depends on the number of interested students (at least 6 students must enroll in a course for this course to be offered).

The program is organized in two semesters:

SEMESTER 3 = 30 credits to validate out of 33

Students choose a course at the beginning of the year. The students follow 9 teaching units (UE) of 20 hours each and represent 3 ECTS (27 ECTS out of the 60 required to obtain the diploma).

Each student follows 5 fundamental teaching units (UEF) and chooses 4 complementary teaching units (UECs) from the detailed list below. This choice will be made during the first quarter and will have to be validated by the teaching team for pedagogical coherence. The UEFs aim to ensure that students who come from very different backgrounds (computer science, electronics, mathematics, electrical engineering, etc.) have at the end of the first part of the lessons a minimum set of skills to follow the complementary or special courses that are offered. The UECs are delivered in the second half of the semester (December to February). Depending on the choice of students, 6 to 8 teaching units are usually offered. The complementary UEs deepen the chosen program. The UECs chosen by the students must be validated by the teaching team. The teaching team will be able to validate a transversal choice of the courses, ensuring that it is consistent, after discussion with the student.

Students can also follow a free UE. The free UE is to be chosen from all the other research paths.
These scientific courses are complemented by a UE of "Management of Innovation and Entrepreneurship" led by Accet Technopole Val d'Oise and a UE of English. A research project helps prepare students for their internship. The research project involves thorough practice (theoretical and practical) of subjects proposed by the teachers of the Master program. This project is carried out within the ETIS laboratory and has a duration of more than 150 hours. A long internship (in private or public research laboratory) usually lasting 6 months (4 months minimum) completes the program.

SEMESTER 4 = 30 credits to validate over 30

Program – Signal, Wireless communications (ST)

List of fundamentals UE of the program – Signal, Wireless communications

2 UEF mandatory:

- **UEF-3-ST** Digital Communications Basics (I. Fijalkow et Cl. Weidmann)
- **UEF-5-ST-IAR** Optimization Technics (I. Fijalkow et Ph. Gaussier)

3 UEF to choose from:

- **UEF-ESA-5** Embedded Communications (R. Sobot)
- **UEF-4-IAR** Artificial Intelligence (Ph. Gaussier et M. Quoy)
- **UEF-2-IMD** Image Processing (D. Picard, A. Histace et Ph.-H. Gosselin)
- **UEF-MADOCS-1** Machine Learning (B. Chalmond)
- **UEF-6-ST** Databases (D. Kotzinos)
- **UEF-7-IAR** Architectures of Intelligent Systems (Ph. Gaussier)

List of complementary UE of the program – Signal, Wireless communications

3 UEC recommended:

- **UEC-2-ST** Source Coding, Image and Video Compression (Cl. Weidmann)
- **UEC-7-ST** Coding, Turbo-coding (D. Declercq et I. Andriyanova)
- **UEC-8-ST** Information and game theory (M. Le Treust, L. Luzzi et L. Wang)

1 UEC to choose from:

- **UEC-3-ST** Principles of mathematical physics and inverse problems in imagery (M. Nguyen)
- **UEC-6-IAR** Learning, adaptation (P. Andry, Ph. Gaussier et M. Quoy)
- **UEC-ESA-1** Communication in heterogeneous systems (E. Bourdel et P. Lecoy)

Research Project

The research project is a synthesized work (including bibliography, theoretical analysis and implementation) allowing the student to deepen one of the disciplinary fields of the Master and to prepare the student for the internship in a research laboratory (to learn to make work plans, write a report, write a research paper, etc.).

4
The student is supervised by a teacher during the period of the research project.

Internship

The long internship usually lasting 6 months (4 months minimum) constitutes a very important part of the training. It validates 20 ECTS credits out of the 60 total credits. This course validated by one of the persons in charge of the course must be carried out on a research subject at a university or industrial laboratory. Among our French partners who have hosted internships in recent years are:

Support Laboratory

ETIS (Equipes Traitement de l'Information et Systèmes, UMR 8051), ENSEA-UCP-CNRS.

Other laboratories or industrial partners (non-exhaustive list):

- **Laboratories in Cergy:**
 - QUARTZ, EPMI, SATIE (UMR8029), Johnson Controls Automotive (Cergy), SAFRAN electronics & defense (Osny), Thalès Communications & Security (Gennevilliers), VALEO (Cergy), EADS (Les Mureaux), ABB robotics (Cergy), Partnering3D (Cergy), SYRTEM (Franconville)

- **Laboratories nationwide:**
 - INRIA (Sophia Antipolis), Armines (Paris), ENS (Lyon), Centre Hospitalier Becquerel (Rouen), CEA Saclay (Gif-sur-Yvette), CEA-LETI (Grenoble), INSERM (Paris), ENST (Paris), IRISA (Rennes), LIP6 (UMR7606) à l’Université Pierre-et-Marie-Curie, IEF (UMR8622) à l’Université Paris-Sud, LSS (UMR8506) à Supélec, LRV (FRE2659) à l’Université de Versailles-Saint-Quentin, LVR (EA2078) à Bourges, LAAS (UMR8001) à Toulouse, TRT (UMR137) à Orsay-Corbeville, United Monolithic Semiconductors à Orsay-Corbeville, Alcatel Space Industries à Toulouse, Thalès Air Defence à Ymare, Thalès Electron Devices à Vélizy, Thales Research and Technologie (Palaiseau), LIRMM (UMR CNRS, Université de Montpellier 2), IMS (UMR5218, Talence), etc.

- **Industrial partners:**
 - Orange Labs (Issy-les-Moulineaux, Meulan, Lannion), Thalès ATM (Bagneux), Thalès Communications (Gennevilliers), Thalès Services SAS (Osny), Thomson Airsysèmes (Vélizy), Safran (Eragny), Morpho (Osny), EDF (Chatou), EADS (Vernon), Alcatel (Vélizy), Loxane (Cergy), IGN (Saint-Mandé, Gostai (Paris)), SNCF (Paris), Institut Français du Pétrole, ONERA (Arcueil, Palaiseau), DOLABS (Boulogne), METACOM (Magny-Chateaufoort), ST Microelectronics (Grenoble), etc.

- **Foreign industrial and academic partners:**
 - HW Communications Limited (Lancaster, UK), University of Central Lancashire (Preston, UK), Lulea Tekniska Universitet (Lulea, Suède), Université de Laval (Québec, Canada), ITT (Illinois Institute of Technology, Chicago, USA), Université Technique de Sofia (Bulgarie), Université Gh. Asachi à Iasi (Roumanie), Ecole Polytechnique de Tunisie à La Marsa (Tunisie), Ecole Nationale d’Ingénieurs de Tunis, Université de Cantabrie à Santander (Espagne), Université Technique de Berlin (Allemagne), ACCO-USA à Littleton (Etats-Unis), School of Electrical Engineering, Information Technology and Maths SEEITM (University of Surrey, GB), etc.

See also the announcements on various GDRs and associations related to our fields:

http://gdr-isis.fr/ (Image-signal)

http://www.risc.cnrs.fr/ (cognitives sciences)

Evaluations

The research specialization must ensure that the graduate student has satisfyingly acquired the skills required to pursue doctoral training or to be a research engineer in the field of electronics for automatic systems. In this
spirit, credit compensation between different courses is possible only if the student obtains a minimum score in each course.

At the end of the M2, the time of which is determined by the validation of the two semesters of the M1 or equivalent training, the Master's degree in Intelligent Systems and Communicants Computing and Engineering of Complex Systems is awarded if one of the following conditions is met:

1. The UE average (teaching unit) is greater than or equal to 10/20,
2. The traineeship grade is greater than or equal to 10/20.

The Fundamental UE and the Complementary UE, the Project to Research Initiation and the internship are validated by terminal control.

Each UE is assigned a value in ECTS European credits. The scale of values in European credits is identical to that of the coefficients. The teaching units and the corresponding credits are acquired and capitalizable if the student has obtained a mark higher than or equal to 10/20. Each semester corresponds to 30 credits and each year to 60 credits. The second year of the Master's degree is validated as a whole.

Graduation gives 60 corresponding M2 credits.

The Master's degree must ensure that the graduate student has satisfyingly acquired the skills required to pursue doctoral training or to be a research engineer in the fields of intelligent and communication systems.

2nd session

The first session brings together the notes from the UEF, UEC and the Research Initiation Project. A second session is held in June for examinations with a mark of less than 08/20 or for the UEs specified by the jury if the student has a partial average (UE and research project) of less than 10/20 and no score less than 08/20. The grades obtained at this second session replace those of the first for the subjects concerned.

A score lower than 08/20 at the second stage implies failure in the M2. The jury has the final right to declare admission of a student to the Master and to issue the diploma.

Calendar

<table>
<thead>
<tr>
<th>Course</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental UE</td>
<td>October to December</td>
</tr>
<tr>
<td>Complementary UE</td>
<td>November to February</td>
</tr>
<tr>
<td>Research Project</td>
<td>December to March</td>
</tr>
<tr>
<td>Internship</td>
<td>April to September</td>
</tr>
</tbody>
</table>

Teaching Evaluation

An anonymous questionnaire is distributed to the students before they leave for the internship. They are invited to give their opinion on the courses for each UE.

A delegate of students elected by his/her peers is invited to various juries, where he/she has the possibility of conveying opinions of the students. All these opinions are taken into account by the training team to improve the teaching.

A more general questionnaire is also proposed by the University of Cergy-Pontoise.

MASTER Informatics & Engineering of Complex Systems
Person in charge: Professor Philippe GAUSSIER
ENSEA correspondent: Hedi TABIA

Contact:
Secrétariat MASTER M2 Recherche :

ENSEA
6, avenue du Ponceau – CS 20707 CERGY
95014 CERGY-PONTOISE
Tél. : (33) 01 30 73 62 63
Fax : (33) 01 30 73 66 27
Courriel : mastersic@ensea.fr

Website to download the application form:
http://www-etis.ensea.fr/fr/formation.html
UEF-2-IMD : Traitement numérique des images

Mots clés : numérisation, filtrage, segmentation, approche variationnelle, contours actifs, restauration par EDP, décomposition, compression

L’objet de ce cours est, dans un premier temps, de présenter les concepts de base du traitement d’images, depuis l’acquisition et la formation de l’image, jusqu’à l’extraction de primitives contours et régions et dans un deuxième temps de présenter des méthodes avancées et récentes dans les domaines de la segmentation, de la restauration d’image, de la décomposition et de l’estimation du mouvement. L’objectif est donc double : (i) se familiariser avec l’objet étudié, à savoir l’image numérique comme signal bidimensionnel discret, puis (ii) d’apporter les outils mathématiques nécessaires permettant de maîtriser les techniques de filtrage, de restauration, de segmentation et de compression des images.

Introduction (2h) : Acquisition d’images, échantillonnage, quantification, pavage du plan, modèles mathématiques

1. Fondamentaux du traitement des images (8h) :
1.1 Opérations élémentaires : transformations d’histogrammes, transformée de Fourier, convolution
1.2 Filtrage : débruitage (filtrage linéaire et non linéaire), détection de contours (gradient, Laplacien, Sobel, Prewitt, Canny-Deriche...), transformée de Hough, déconvolution.
1.3 Segmentation : principe, application, approches classiques (croissance de région, ligne de partage des eaux)
1.4 Compression des images : principe, compression avec pertes, sans pertes, principaux standards.

2. Méthodes avancées (10h) :
2.1 Approche variationnelle en traitement d'image.
2.2 Restauration d'image par EDP (Equations aux Dérivées partielles) : Equation de la chaleur, isotropie, anisotropie, non-linéarité (Perona-Malick), approche tensorielle (Weickert).
2.3 Segmentation d'images par contours actifs : principe des contours actifs, approche contour, approche région, modèle explicite ou paramétrique, modèle implicite ou courbes de niveaux (level-set), a priori de forme, de bruit...
2.4 Estimation du mouvement dans des séquences d'images.

Prérequis : Traitement numérique du signal, transformée de Fourier, signal aléatoire.

UEF-3-ST : Bases de communications numériques : information, détection

(Imbar FIJALKOW – ETIS, ENSEA, et Claudio WEIDMANN – ETIS, UCP).

Mots clés : capacité, codage de source, alphabet de modulation, codage de canal, condition de Nyquist, filtre de mise en forme, canal additif Gaussien, rapport signal à bruit, filtre adapté, probabilité d’erreur bit, efficacité spectrale, canal dispersif en temps, canal dispersif en fréquence, égalisation.

Le but de ce cours est de présenter les différents organes d’une chaîne de communication usuelle, en insistant sur les outils empruntés aux théories de l’information et de la détection.

- Émission
 Au niveau de l’émetteur, on utilise les résultats de la théorie de l’information pour transformer les signaux que l’on veut émettre. Ces transformations servent entre autre à réduire la redondance des signaux (codage de source), mettre en forme l’information (techniques de modulation), sécuriser ou améliorer la transmission (codage de canal), maximiser le débit d’information utile (calcul de capacité).
- Réception
En présence de bruit thermique et en l’absence d’autres perturbations, le récepteur d’une chaîne de communication se construit comme une fonction de détection. On dérive ainsi le filtre adapté, les détecteurs optimaux et les performances des différents alphabets de modulation. Lorsque l’on considère en plus un canal de propagation, de nouvelles perturbations sont introduites. On décrira en particulier, les canaux dispersifs en temps ou en fréquence et les traitements appliqués pour réduire les perturbations, codage correcteur d’erreur ou égalisation.

Prérequis : Bases de probabilités, filtrage, processus aléatoires.

UEF-4-IAR : Intelligence artificielle (Mathias QUOY et Philippe GAUSSIER – ETIS, UCP).
Mots clés : résolution de problèmes, algorithmes de jeu, systèmes experts, logique floue, réseaux de neurones, algorithmes génétique.

Le but de ce cours est d’introduire différents types de techniques dites d’Intelligence Artificielle (IA) appliquées à des problèmes liés au traitement du signal, à la reconnaissance des formes et à la robotique. Tout d’abord nous présenterons la notion d’agent intelligent puis les techniques classiques de résolution automatique de problèmes dans un espace d’état de grandes dimensions :
- Rappels de recherche dans un arbre ou un graphe
- Algorithme A* (notation de fonction heuristique)
- Arbres ET/OU, minimax, alpha/beta...

Nous étudierons ensuite comment le raisonnement peut être formalisé et utilisé dans des systèmes experts :
- Logique formelle d’ordre 0 et d’ordre 1 (principe de résolution...)
- Systèmes à bases de règles
- Logique floue

Nous analyserons les limites de ce type de systèmes ("symbol grounding problem" et "frame problem"). Nous montrerons comment dans certains cas des systèmes réactifs très simples peuvent être utilisés pour résoudre des problèmes qui semblaient au départ relativement complexes (approche ascendante de la cognition) :
- Planification réactive (potential fields, ...)
- Notion de systèmes multi-agents
- Intelligence collective (application à des taches de clustering, de recherche de plus court chemin...)

Par la suite, des techniques basées sur l’emploi de réseaux de neurones seront présentées de même que les systèmes à base de classeeur et les algorithmes génétiques :
- Notion de neurone formel (règle de Hebb, réseaux de Hopfield...)
- Perceptrons
- Classification on supervisée (carte de Kohonen)

Prérequis : Bonnes bases en algorithmique et programmation.

UEF-5-ST-IAR : Techniques d’optimisation
Mots clés : erreur quadratique moyenne, filtre de Wiener, gradient déterministe, gradient stochastique, LMS, RLS, Kalman, équation différentielle ordinaire, recuit simule, optimisation sous contrainte, multiplicateurs de Lagrange, régularisation.

Le but de ce cours est de présenter des techniques de résolution de problèmes se traduisant par l’optimisation d’un critère (ou fonction de coût). Nous abordons d’abord le critère quadratique qui correspond à maximiser la ressemblance entre un signal de référence et le filtrage (spatial ou temporel) des signaux observés. Pour minimiser ce critère avec une complexité réduite, nous envisageons :
- la solution linéaire optimale (filtre de Wiener).
- des algorithmes adaptatifs (LMS).
- des algorithmes récursifs (RLS, Kalman).
L’optimisation de critères plus complexes comprenant des minima locaux peut être réalisée par des algorithmes adaptatifs (gradient stochastique) avec des risques de minima locaux ou par des techniques alternatives de type recuit simulé ou algorithmes génétiques.

Les méthodes d’analyses des performances de ces algorithmes seront également présentées.

La construction et l’optimisation de critères convexes fournissent une classe très vaste de solutions non linéaires, dont les performances peuvent être très supérieures à celles du filtrage linéaire. On présentera quelques propriétés générales liées à la convexité, dont l’absence de minima locaux, puis leurs conséquences en déconvolution : approche pénalisée non quadratique, interprétation probabiliste bayésienne, formulation semi-quadratique, ainsi que des techniques d’optimisation adaptées (relaxation, gradient conjugué, relaxation sur critère semi-quadratique).

- Approximation d’une fonction par un réseau de neurones multi-couches (rétro-propagation du gradient).
- Recuit simulé et Algorithmes génétiques.

Application : annulation d’écho en visiophonie, restauration d’images, classification

Prérequis : Filtrage de processus aléatoire, modélisation des signaux aléatoires.

UEF-6-ST : Bases de données (Dimitris Kotzinos – ETIS, UCP).

Le but de ce cours est de présenter un condensé des notions fondamentales en bases de données, nécessaires pour pouvoir suivre les autres modules du parcours traitant de la gestion des masses de données.

Le cours aborde les notions présentées autour d’exercices dirigés sur des exemples concrets. Centré sur les bases de données relationnelles, il présente le modèle de données, avec l’algèbre relationnelle et le langage SQL, ainsi que le fonctionnement d’un système de gestion de bases de données (SGBD) pour l’exécution des requêtes. Au-delà du modèle relationnel, sont également présentées d’autres types de données courants sur le Web: texte, HTML et XML.

Le cours est enseigné en anglais.

Contenu :
- * Bases de données relationnelles: modèle relationnel, algèbre, SQL
- * Exécution de requêtes dans un SGBD: plans d’exécution, optimisation
- * Données sur le web: texte, HTML, XML.

UEF-7-IAR : Architectures des systèmes intelligents (Philippe GAUSSIER – ETIS, UCP).

Le but de ce cours est d’apprendre à intégrer les différentes briques de base (vues dans les autres cours du master) nécessaires à un système « intelligent ». Le cours est basé sur les modèles d’architectures de contrôles imaginées en IA, robotique et SMA pour contrôler des systèmes complexes. Des comparaisons avec des résultats en psychologie, neurobiologie et éthologie seront discutées. De nombreuses études de cas seront présentées.

- Architectures pour les systèmes intelligents :
 - Introduction à la théorie des systèmes.
 - Méthodologie de conception de systèmes.
 - Dynamique des boucles Perception/Action.
 - Modèles d’architectures de contrôle pour les systèmes robotiques.
 - Dynamique des processus de prise de décision.

- Systèmes multi-agents
 - Résolution de problèmes à base d’agents réactifs ou d’éco-agents. Agents mobiles sur Internet.
 - Application à la recherche d’information sur le web et à la communication avec des systèmes embarqués.
 - Études de cas d’objets communicants et de systèmes intelligents.

- IHM multimodales (image/parole)
 - Analyse du signal de parole.
 - Codages.
 - La reconnaissance en ligne de l’écriture.
 - L’utilisation de la vision pour les IHMs.
– Présentation par un industriel des problèmes liés aux IHM sur un cas pratique.

Prérequis : Intelligence artificielle, architecture.

UEF-ESA 5 : Communications embarquées (Robert SOBOT, ETIS, ENSEA).
Après un rappel concernant la mise en forme des signaux à transmettre (modulation, filtrage), le cours s’orientera principalement sur l’étude du front-end RF d’une chaîne d’émission/réception. Les caractéristiques des circuits utilisés dans les systèmes autonomes doivent répondre à des contraintes de taille, coût, consommation et performances. Les architectures et les circuits sont donc présentés.
Ce cours s’articule autour des parties suivantes :
1. architecture d’un émetteur/récepteur.
2. contraintes et conception des circuits analogiques : réseau d’adaptation, amplificateur RF, oscillateur- étage mélangeur RF, et décodeur.
3. influence des caractéristiques des circuits sur la qualité.
Un TP illustre ce cours et permet de concevoir et de simuler des circuits analogiques.
Prérequis : notion de base sur les circuits analogiques et les modulations numériques.

UEF-MADOC5-1 : Machine Learning (Apprentissage statistiques I)
(Bernard CHALMOND - UCP).

Sciences de données.
Ces méthodes d’apprentissage numérique connaissent depuis plus d’une décennie un immense succès. Ce type de technique est aujourd’hui si répandu que vous l’utilisez probablement des dizaines de fois par jour sans le savoir. La variété des secteurs et des problèmes traités est illustrée par la plate-forme de compétition Kaggle. Citons les domaines des réseaux, du biomédical, de la finance, de la surveillance de structure industrielle, des télécommunications, de la robotique, de l’automobile, et bien d’autres encore.

Unités d’Enseignement Complémentaires

UEC-2-ST : Codage de source, compression d’images fixes et vidéos
(Claudio WEIDMANN – ETIS, UCP).
L’objectif de ce cours est d’acquérir les fondamentaux en codage de source et compression de données. On s’attachera à présenter les notions et techniques fondamentales ainsi que les applications aux différents standards de compression existants.
Le cours est organisé de la manière suivante :
Compression sans perte :
– Modèle de sources, entropie, codage entropique à longueur variable (Huffman), théorème fondamentale du codage de source sans perte.
– Codes de Shannon-Fano et arithmétiques.
– Compression universelle.
– Méthodes de compression à base de dictionnaire, codage de Lempel-Ziv.
– Codes entropiques particuliers et transformation de Burrows-Wheeler.
Compression avec pertes :
– Quantification scalaire, algorithme de Lloyd-Max.
– Entropy différentielle, théorie Débit-distorsion, théorème fondamentale du codage de source avec perte.
o Quantification vectorielle et algorithme LBG.
 o Compression de source progressive.
 o Codage par transformée : codage par transformation DCT et ondelettes. Application à la compression d’images (JPEG et JPEG2000).

Méthodes avancées :
 o Quantification en treillis.
 o Codage par descriptions multiples.
 o Introduction au tatouage numérique.

Prérequis : Bases de traitement numériques des images, bases de communications numériques, ondelettes et banc de filtres.

UEC-7-ST : Codage, turbo-codage
(David DECLERCQ – ETIS, ENSEA, et Iryna ANDRIYANOVA – ETIS, UCP).
Mots clés : Codes en bloc, codes convolutifs, décodage souple, Algorithme de Viterbi, algorithme BCJR, treillis, graphe factoriel, propagation de croyances, codes LDPC, turbo-codes.
La vocation du cours est de doter ses auditeurs des connaissances théoriques et pratiques qui permettent de concevoir et analyser un codeur de canal destiné à lutter contre les erreurs. Les points suivants seront traités :
 Théorie générale des codes linéaires, codage aléatoire, distance minimale
 Structure et décodage des codes convolutifs : algorithme de Viterbi, BCJR, représentation graphique des codes convolutifs, extention aux turbo-codes
 Décodage et optimisation des codes LDPC : algorithme de propagation de croyances, codes LDPC irréguliers, évolution de densités

Prérequis : bases de Communications numériques, probabilités.

UEC-8-ST : Information and game theory
(Inbar FIJALKOW, Laura LUZZI – ETIS, ENSEA et Mael LE TREUST, Ligong WANG – ETIS, CNRS).
Le but de ce cours est présenté les alternatives à l’égalisation afin d’optimiser l’utilisation du support fréquentiel pour bien transmettre la plus grande quantité d’information possible (le codage correcteur d’erreur est étudié en UEF-SIC-R-8).
Les points suivants seront traités :
 - émission et réception en multi-porteuses (OFDM),
 - accès multiple : multiplexage par répartition de codes (CDMA) en fréquence (OFDMA, SC-FDMA)
 - Multiplexage spatial, Formation de voies, MRC, diversité d’antenne en émission et réception, codage spatio-temporel.

Prérequis : Bases de communications numériques, bases de probabilités.

UEC-3-ST : Principes de physique mathématique et problèmes inverses en imagerie (Mai NGUYEN - ETIS, ENSEA).
Mots clés : systèmes d’imagerie, imagerie par émission, par transmission et par réflexion, formation et reconstruction d’images, transformations intégrales, méthodes inverses.
L’objectif du cours est de fournir les connaissances pluridisciplinaires (traitement de l’image, physique, mathématiques, problèmes inverses et analyse numérique) en vue d’étudier les différents aspects d’un système d’imagerie, à savoir le processus physique de formation d’images, instrumentation, reconstruction d’images et
leurs modélisations mathématiques. Sont concernés les systèmes d’imagerie qui utilisent les ondes acoustiques, électromagnétiques et les rayonnements ionisants (X et gamma) fonctionnant par réflexion, par émission et par transmission. Ces systèmes d’imagerie se trouvent dans de nombreuses applications telles que l’imagerie médicale, le contrôle industriel non destructif, la sécurité du territoire, l’astronomie, etc.

Les points suivants seront abordés et illustrés :

- Principes d’imagerie par émission, par transmission et par réflexion basés sur la physique des ondes et du rayonnement ionisant
- Transformées intégrales (Radon, Fourier, Fourier, Hankel, Legendre) et leur application en imagerie
- Elément d’analyse harmonique et application en imagerie
- Problèmes inverses en imagerie : méthodes de restauration et de reconstruction d’images (analytiques, algébriques et statistiques)
- Algorithmes associés et analyse numérique

Prérequis : Optimisation de critères (tronc commun), bases de traitement d’images (tronc commun).

UEC-6-IAR : Apprentissage, adaptation

(Pierre ANDRY, Philippe GAUSSIER et Mathias QUOY – ETIS, UCP).

Mots clés : classification statistique, réseaux de neurones pour la classification, apprentissage associatif, apprentissage par renforcement, cartes cognitives, dynamique et adaptation.

L’objectif de ce cours est d’étudier des techniques permettant à un système de s’adapter aux variations de son environnement ou de classifier des données en fonction de certaines régularités statistiques. Chaque technique sera illustrée par des études de cas pratiques : classification de billets de banques, apprentissage de la planification dans un labyrinthe, optimisation du routage dans un réseau ATM.

Tout d’abord nous étudierons les différents types de classification de données :

- analyse des données (analyse en composantes principales, ...)
- classifiants statistiques (classifiants bayésien, nuées dynamiques, ...)
- réseaux de neurones supervisés (LMS, rétropropagation du gradient, ...)
- arbres de décision
- RN non supervisés (LVQ, cartes topologiques, ART, ...)
- machines à support vecteur

Ensuite nous nous intéresserons aux problèmes d’apprentissage par renforcement :

- apprentissage d’associations sensori-motrices (conditionnement)
- politiques de maximisation de renforcement (greedy policy, fonction d’utilité, mécanismes de prise de décision simples, ...)
- résolution de problème avec une récompense frustrée et/ou retardée (TD-lambda, Q-learning, mécanismes de prise de décision complexes, ...)

Ces techniques seront comparées à des techniques de planification classiques et/ou de construction de carte cognitives (grilles résistives, réseaux de croyance, graphes pour la planification). Pour finir, le problème de la dynamique de la prise de décision et de ses implications à la fois pour l’apprentissage et la stabilité des comportements sera abordé (winner take all dynamiques, théorie des systèmes dynamiques, champs neuronaux : équations d’Amari, ...).

Prérequis : Techniques de base d’Intelligence Artificielle, statistiques et optimisation.

UEC-ESA-1 : Communication dans les systèmes hétérogènes

(Emmanuelle BOURDEL et Pierre LECOY – ETIS, ENSEA).

Les réseaux d’interconnexions répondent au besoin de communications entre blocs au sein des systèmes intégrés sur puce. Ils représentent les principaux facteurs limitatifs des performances des futurs systèmes sur puce.
L’objectif de ce cours est de fournir les éléments théoriques et les briques technologiques permettant de modéliser les différentes architectures d’interconnexions dans les systèmes hétérogènes. Il abordera en particulier :

- La présentation des interconnexions classiques de type bus
- La définition des paramètres nécessaires à une modélisation niveau système des réseaux d’interconnexions
- L’étude des technologies émergentes pressenties comme solutions potentielles pour les futurs systèmes hétérogènes comme par exemple les réseaux d’interconnexions RF (RF-NoC, RF-Network on Chip) ou les réseaux d’interconnexions optiques (O-NoC).